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Abstract Iridium (III) 2-phenylpyridine (ppy) complexes
with two suitable monodentate L ligands [Ir(ppy)2(L)2]

+

(ppy 0 2-phenylpyridine, py 0 pyridine, L 0 4-pyCN 1, 4-
pyCHO 2, 4-pyCl 3, py 4, 4-pyNH2 5) were studied by
density functional theory (DFT) and time-dependent DFT
methods. The influences of ligands L on the electronic
structure and photophysical properties were investigated in
detail. The compositions and energy levels of the lowest
unoccupied molecular orbital (LUMO) are changed more
significantly than those of the highest occupied molecular
(HOMO) by tuning L ligands. With the electronegativity
decrease of L ligands 4-pyCN > 4-pyCHO > 4-pyCl > py >
4-pyNH2, the LUMO distributing changes from py to ppy,
and the absorptions have an obvious red shift. The calculated
results showed that the transition character of the absorption
and emission can be changed by adjusting the electronegativ-
ity of the L ligands. In addition, no solvent effect was ob-
served in the absorptions and emissions.

Keywords Density functional theory . Electronic structure .
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Introduction

Phosphorescent iridium (III) complexes have been explored
for a variety of photonic applications including emitting

diodes [1, 2], biological labeling [3], photosensitization [4,
5], and emissive materials [6] in electrochemiluminescent.
Especially, six-coordinate cyclometallated Ir(III) complexes
with one, two, or three 2-phenylpyridine (ppy), or derivative
C^N ligands and other ancillary ligands [7–9], such as Ir
(Mebib)(ppy)X (Mebib 0 bis(N-methylbenzimidazolyl)ben-
zene; X 0 Cl, −C ≡ C, CN), Ir(η2-ppy)2(η

2-XZY) (XZY 0 2-
mercaptopyridine (mp) and trimethylacetic acid (tma) etc.),
Ir(ppy)3, and Ir(C^N)2LX (C^N 0 benzoquinoline (bzq), 2-
(4-tolyl)pyridine (tpy), 2-(2 -thienyl)pyridine (thp), LX 0

acetoylacetonate (acac), dibenzoylmethanate (dbm)), have
received intensive attention due to their favorable photo-
chemical and photophysical properties. The luminescence
properties of Ir(III) complexes can be fine-tuned by ligand
substituents, resulting in distinct emission color tuning [10].

On the other hand, Ir(III) complexes have also attracted
considerable interest as sensor, because of their significant
stokes shifts, long emissive lifetimes, and large emission
shifts from change in the local environment compared with
purely organic luminophores [11]. Although some Ir(III)
compound-based chemosensors for anion [12–14] and oxy-
gen [15, 16] have been described, the chemosensors to
heavy metal ions are still less explored. To the best of our
knowledge, Ir(btp)2(acac) (btp 0 2-(benzo[b]thiophen-2-yl)
pyridine) presents highly selective phosphorescent chemo-
sensor for Hg2+, [Ir(ppy)2 L]PF6 (L 0 (4-[2,2 ]Bipyridinyl-
5-ylethynylphenyl)pyridin-2-ylmethylamine) shows selec-
tive luminescence recognition to Zn2+, and [Ir(ppy)2L]PF6
(L 0 (4-[2,2 ]Bipyridinyl-5-ylethynylphenyl)thiophen-2-
ylmethylamine) exhibits a unique off-on-off luminescence
switching effect to Cu2+ [17, 18], which have been investi-
gated experimentally and theoretically. Recently, a series of
new cationic Ir(III) complexes [Ir(ppy)2L2]

+ (L 0 4-pyCHO,
4-pyNH2) have been synthesized, and X-ray crystal struc-
tures, absorption and emission spectra have been
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investigated by Sie et al. [19]. It is worth noting that the L
ligand in Ir(III) complexes [Ir(ppy)2L2]

+ is monodentate
ligand, which is different from the bidentate L in Ir
(C^N)2L complexes mentioned above. Meanwhile, the
quantum yield of [Ir(ppy)2(4-pyNH2)2]

+ is much higher than
that of [Ir(ppy)2(4-pyCHO)2]

+, and [Ir(ppy)2(4-pyNH2)2]
+

has shown good chemical-sensing ability to silver salts.
Therefore, by changing the substitutive group on the ancil-
lary ligand (py) can change spectroscopic property and
furthermore make change in potential application. But the
theoretical study on the spectral properties of these com-
plexes is sparse from an electronic structure point of view. In
addition, the relationship between L ligands and the spectra
in the complexes [Ir(ppy)2L2]

+ is not clear. Therefore, a
deep insight into the structures and spectroscopic properties
for this kind of complexes is much needed and significant.

To foresee new structure-property relationships and re-
veal the effects of the ligands L on electronic structure and
photophysical property, we carried out the quantum chem-
istry studies on the cationic Ir (III) 2-phenylpyridine com-
plexes with two suitable monodentate ancillary ligands L,
[Ir(ppy)2(L)2]

+ (ppy 0 2-phenylpyridine, py 0 pyridine, L 0
4-pyCN 1, 4-pyCHO 2, 4-pyCl 3, py 4, 4-pyNH2 5), using
density functional theory (DFT) methods [20]. In addition,
the influences of different solvents on the spectra were also
studied in detail. The present study presents useful informa-
tion for the design of new phosphors based on [Ir
(ppy)2(L)2]

+ complexes with different ligands L in sensor.

Computation methods

All of the calculations were accomplished by using the
Gaussian 03 software package [21]. A hybrid Hartree-Fock
(HF)/DFT model approach based on the Perdew-Burke-
Erzenrhof (PBE) functional [22, 23], referred to as
PBE1PBE, where the HF/DFT exchange ratio is fixed a
priori to 1/4, was used to optimize the ground state, and
the unrestricted PBE1PBE (UPBE1PBE) method was used
to optimize the excited state geometries. There were no
symmetry constraints on these complexes. Although the
high electron multiplicity is considered, the calculated spin

contamination is rather small: the expectation values of spin
operator <S2> are about 2.03 for triplet states. Base on
optimized geometries in the ground and the excited state,
the molecular orbital compositions, and absorption and
emission spectra in CH2Cl2 media were calculated by
time-dependent DFT (TD-DFT) method [24–26] at the
PBE1PBE hybrid functional level associated with the polar-
ized continuum model (PCM) [27, 28]. In addition, the
molecular orbital compositions (population analysis) were
calculated by C-squared population analysis (SCPA) meth-
od [29] and the absorption spectra were simulated by means
of Swizard [30] program using Gaussian functions with
half-width of 3000 cm−1. In the calculations, the quasi-
relativistic pseudo-potentials of Ir atom proposed by Hay
and Wadt [31, 32] with 17 valence electrons were used. The
LANL2DZ basis set associated with the pseudo-potential
was adopted for Ir atom, and 6-31G(d) basis bet was adop-
ted for other atoms. This kind of theoretical approach and
calculation level has been proven to be reliable for
transition-metal complex systems [33–37].

To explain the rationality of the PBE1PBE method and
LANL2DZ/6-31G(d) basis set, complex 2 was selected to
do the calculation test with different functionals and basis
sets. Tables 1 and 2 show that the excitation energies and
ground geometries obtained by the basis set LANL2DZ/6-
31G(d) are more accurate than the results obtained by other
larger basis sets; moreover, LANL2DZ/6-31G(d) is good for
saving computational resources. The geometry parameters
and the excitation energies of absorptions obtained by dif-
ferent functionals including PBE1PBE, B3LYP (Becke’s
three-parameter functional and the Lee-Yang-Parr function-
al) [38, 39], B3P86 (Becke’s three-parameter functional and
the Perdew 86 functional), BPBE (Becke’s Perdew-Burke-
Erzenrhof) [40], and BPW91 (Becke’s functional and the
Perdew-Wang 91 functional) [41–43] were shown in
Tables S1 and S2 (Supplementary material). The stable
geometries and the absorptions obtained by PBE1PBE
are more accurate than other functionals compared with
the experimental results. Therefore, we predicted the
structure and photophysical properties of complexes 1, 3
and 4 using the PBE1PBE method and LANL2DZ/6-31G(d)
basis set.

Table 1 TDDFT calculation on
excitation energies of complex 2
with different basis sets

Exptl Lanl2dz Lanl2dz/6-31G Lanl2dz/6-31G(d) Lanl2dz/6-311(d)

Peak 1 376 397 394 382 385

Peak 2 269 261 258 260 264

Peak 3 231 228 227 228 229

Lanl2dz/6-31 + G(d) SDD SDD/6-31G(d) SDD/6-311G(d) SDD/6-31 + G(d)

Peak 1 391 396 381 382 388

Peak 2 266 261 260 263 265

Peak 3 232 228 228 230 232
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Results and discussion

The molecular geometry structures in the ground state

The main optimized ground state geometry parameters
of 1−5 together with the X-ray crystal diffraction data
[19] of 2 are given in Table 3, and the optimized
geometries of 1−5 in the gas phase are shown in Fig. 1.

Table 3 indicates that the optimized bond lengths and
bond angles of 2 are in general agreement with the
experimental values. The geometry around Ir in each
of the complexes is distorted octahedral with two mu-
tually trans ppy pyridyl groups and two pyridine-derived

monodentates, which are trans to the ppy phenyl rings.
Due to the intense participation of a conjugating phenyl
groups, the bond lengths of Ir − N3(4) are slightly
longer than those of Ir − N1(2) [44]. All the Ir − C1
(2) and Ir − N1(2) bond lengths and bond angles are
within normal ranges in comparison with other Ir(III)
bis-ppy complexes with two monodentate ligands [45–47].
The small change of Ir − N3(4) result from the effects of
different ligands L. In addition, the strengthened metal −
ligand (Ir −N) bond is significantly important to im-
prove the phosphorescent quantum efficiency, and this
may be the origin of the high efficiency of these complexes
[48].

Table 2 The optimized ground geometries of complex 2 obtained by different basis sets

Exptl Lanl2dz Lanl2dz/6-31G Lanl2dz/6-31G(d) Lanl2dz/6-311G(d) Lanl2dz/6-311 + G(d)

Bond length (Å)

Ir − N (1) 2.046 (5) 2.056 2.059 2.056 2.056 2.056

Ir − N (2) 2.050 (6) 2.056 2.059 2.056 2.056 2.056

Ir − N (3) 2.180 (7) 2.179 2.195 2.179 2.180 2.180

Ir − N (4) 2.182 (5) 2.180 2.194 2.180 2.179 2.179

Ir − C (1) 2.003 (6) 2.016 2.015 2.016 2.017 2.017

Ir − C (2) 2.004 (9) 2.017 2.014 2.017 2.016 2.016

Bond angle (deg)

N (1) − Ir − N (2) 173.0 (2) 173.9 174.0 173.9 173.9 173.9

N (1) − Ir − N (3) 85.2 (8) 85.5 85.2 85.4 85.4 85.4

N (3) − Ir − N (4) 89.7 (2) 92.9 92.7 93.0 92.9 92.9

C (1) − Ir − C (2) 90.5 (3) 87.6 88.0 87.6 87.6 87.6

C (1) − Ir − N (1) 79.7 (3) 80.5 80.3 80.5 80.5 80.5

C (1) − Ir − N (4) 179.3 (9) 177.1 177.6 177.3 177.3 177.3

Table 3 Main optimized ground
state geometry parameters of
1−5, together with the experi-
mental values of 2

1 2 3 4 5

S0 S0 exptl S0 S0 S0

Bond length (Å)

Ir − N (1) 2.062 2.062 2.046 (5) 2.061 2.060 2.057

Ir − N (2) 2.063 2.062 2.050 (6) 2.061 2.060 2.057

Ir − N (3) 2.237 2.234 2.180 (7) 2.238 2.234 2.234

Ir − N (4) 2.237 2.233 2.182 (5) 2.238 2.234 2.234

Ir − C (1) 2.003 2.004 2.003 (6) 2.003 2.003 2.002

Ir − C (2) 2.003 2.003 2.004 (9) 2.003 2.003 2.002

Bond angle (deg)

N (1) − Ir − N (2) 174.2 174.2 173.0 (2) 174.3 174.3 174.9

N (1) − Ir − N (3) 85.1 85.0 85.2 (8) 85.2 85.1 85.4

N (3) − Ir − N (4) 92.6 92.3 89.7 (2) 92.1 92.0 91.5

C (1) − Ir − C (2) 88.6 88.5 90.5 (3) 88.9 88.5 88.7

C (1) − Ir − N (1) 80.3 80.3 79.7 (3) 80.3 80.3 80.3

C (1) − Ir − N (4) 177.8 178.0 179.3 (9) 178.1 178.0 177.9
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Electronegativity of the ligands L

In order to study the relationship between electron-
withdrawing abilities of different ligands L (4-pyCN, 4-
pyCHO, 4-pyCl, py, and 4-pyNH2) and electronic structure,
the electronegativity (χ) was introduced to discuss. It can be
expressed as [49]: χ 0 −(EHOMO + ELUMO)/2. Here, EHOMO

is the energy of highest occupied molecular orbital (HO-
MO), and ELUMO is the energy of lowest unoccupied mo-
lecular orbital (LUMO). From the HOMO and LUMO
energies of optimized ligands L, the calculated χ values
are 4-pyCN (4.94 eV) > 4-pyCHO (4.85 eV) > 4-pyCl
(4.21 eV) > py (3.82 eV) > 4-pyNH2 (3.10 eV) (Table S3
in Supplementary material), indicating that the electron-
withdrawing abilities of the ligands L decrease along this
order.

The frontier molecular orbital properties

The frontier molecular orbital compositions of 1−5 are com-
piled in Tables S4−S8 (Supplementary material). Schematic
diagrams of the HOMOs and the LUMOs of 1−5 are shown
in Fig. 2. The calculated results showed that LUMO and
LUMO + 1 of 1 and 2 are localized on the π*(L). For 3, π*
(ppy) and π*(L) contribute the compositions of LUMO and
LUMO + 1 as shown in Table S6 (Supplementary material)
and Fig. 2. However, the LUMO and LUMO+1 of 4 and 5
are mostly concentrated on π*(ppy). It is interesting to
note that the compositions of LUMO and LUMO+1
convert from π*(L) to π*(ppy) with decreased χ values
of L ligands 1 > 2 > 3 > 4 > 5. In contrast, the

compositions of higher occupied molecular orbitals are
hardly affected by L ligands. The HOMOs of 1−5 have strong
d(Ir) (> 45%)which is nearly equivalent contribution from the
π(ppy). The HOMO−1 s of 1−5 lie primarily on the π(ppy) (>
85%), with the exception that the HOMO−1 of 5 is composed
of d(Ir), π(ppy), and π(L). Moreover, the contribution of
π(ppy) to the HOMO-1 decreases in the order of 1 > 2 > 3 >
4 > 5, in line with the electron-withdrawing abilities of L
ligands: 4-pyCN > 4-pyCHO > 4-pyCl > py > 4-pyNH2.

Different L ligands can change the energy levels of the
LUMO more significantly than those of the HOMO, and the
LUMO energies increase with decreased χ values of ligands
L: 1 (−2.9779 eV) < 2 (−2.8234 eV) < 3 (−1.8828 eV) < 4
(−1.7549 eV) < 5 (−1.6277 eV). Therefore, the strong
electronegativity group L can stabilize the LUMO and make
HOMO-LUMO energy gap narrow [50, 51]. On the con-
trary, the weak electronegativity group 4-pyNH2 increases
the LUMO energy in 5. In addition, Table S9 (Supplemen-
tary material) shows that the solvent effect is obvious, and
the energies of HOMO and LUMO of 1−5 are greatly
decreased in gas phase. The effects of ligands L are different
from those of ligands X in complexes [Ir(ppy)2X2] (X 0 CN,
NCS, and NCO) [52], in which the energy levels of HOMO
are changed more significantly than those of LUMO by
tuning X ligands.

Absorptions in CH2Cl2 media

The calculated absorption energies associated with their
oscillator strengths, the main configurations, and their
assignments, as well as the experimental results of 2 and 5

Fig. 1 Optimized ground state
geometries structure of 1−5 at
the PBE1PBE level
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are given in Table 4. The fitted Gaussian type absorption
curves shown in Figs. 3 and 4 display the energy levels of
molecular orbital involved in transitions of 1−5, which can
intuitively understand the transition process.

In the visible region (420–520 nm), the absorption bands
of 1 and 2 at 457 nm and 472 nm are contributed by HOMO
→ LUMO excitation. Table S5 (Supplementary material)
shows that HOMO of 2 is composed of d(Ir) and π(ppy),

while LUMO is dominantly localized on L (4-pyCHO)
ligand. Thus, the absorption of 2 at 472 nm is attributed to
{[d(Ir) + π(ppy)]→ [π*(L)]} transition with metal-to-ligand
and ligand-to-ligand charge transfer (MLCT/LLCT) transi-
tion characters. Similarly, the absorption of 1 at 457 nm is
assigned to {[d(Ir) + π(ppy)] → [π*(L)]} (L 0 4-pyCN)
transition. For complexes 3−5, there are not strong absorp-
tions in this region.

Fig. 2 Schematic diagrams of the HOMOs and the LUMOs of 1−5 (Isovalue for orbital surface 0 0.05)
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Figure 3 shows there are distinguishable bands at 320–
420 nm for 1−5. Table 4 shows that the electron excitation
fromH − 2→ L (CI 0 0.59458) and H − 4→ L (CI 0 0.29439)
should be responsible for the distinguishable singlet→ singlet
absorption band at 363 nm of 2. Table S5 shows that both H − 2
and H − 4 of 2 are composed of dz2 Irð Þ, dxz(Ir), dx2�y2 Irð Þ, and
π(ppy), whereas the LUMO is dominantly localized on π*(L).
Thus, the absorption at 363 nm for 2 can be assigned to
dz2 ; dxz Irð Þ; dx2�y2 Irð Þ þ p ppyð Þ !� ½p � Lð Þ� �� �

transition
with mixing MLCT/LLCT (Fig. 4). Similarly, the ab-
sorption at 353 nm of 1 contributed by H − 2 → L (CI 0
0.60453) and H − 4 → L (CI00.33736) can be described as

MLCT/LLCTcharacter, but the absorption bands of 3−5 have
different transition nature. Table S6 (Supplementary ma-
terial) and Fig. 4 show that the calculated absorption at
373 nm of 3 is produced by the two excitations of H→ L + 1
and H → L + 2 with the configuration coefficients
of 0.55231 and 0.40505, and can be characterized as
dz2 ; dxz Irð Þ; dx2�y2 Irð Þ þ p ppyð Þ !� ½p � ppyð Þ þ p � Lð Þ� �� �

transition with MLCT/LLCT/intraligand charge transfer
(ILCT) character. With respect to 4 and 5, the absorptions at
375 and 383 nm are contributed by electron excitation from
{[d(Ir) + π(ppy)] → [π*(ppy)]} (HOMO → LUMO) with
MLCT/ILCT character (Tables S7 and S8 in Supplementary

Table 4 The vertical singlet absorptions of 1−5 in dichloromethane calculated according to TDDFT method, together with the experimental values

Transition coeff׀CI׀ E(eV)/(nm) Oscillator Assignment λexp/nm (ε)a

1 H → L 0.69780 (97 %) 2.71/457 0.0161 MLCT/LLCT

H − 2 → L 0.60453 (73 %) 3.51/353 0.0534 MLCT/LLCT

H − 4 → L 0.33736 (23 %) MLCT/LLCT

H − 1 → L + 6 0.59291 (70 %) 4.85/256 0.3223 MLCT/ILCT

H − 7 → L + 3 0.44221 (39 %) 5.67/219 0.2703 MLCT/ILCT/LLCT

H − 13 → L + 1 0.33028 (22 %) ILCT/LLCT

H − 14 → L 0.26249 (14 %) ILCT/LLCT

2 H → L 0.69645 (97 %) 2.63/472 0.0151 MLCT/LLCT

H − 2 → L 0.59458 (71 %) 3.42/363 0.0471 MLCT/LLCT 376 (5.1)

H − 4 → L 0.29439 (17 %)

H − 1 → L + 6 0.37393 (28 %) 4.85/255 0.4123 MLCT/ILCT 269 (19.3)

H − 2 → L + 4 0.27273 (15 %) MLCT/LLCT /ILCT

H − 10 → L + 1 0.24148 (12 %) MLCT/LLCT/ILCT

H − 15 → L + 1 0.39666 (31 %) 5.67/218 0.2190 LLCT/ILCT 231 (38.0)

H − 16 → L 0.24718 (12 %) LLCT/ILCT

3 H → L + 1 0.55231 (61 %) 3.32/373 0.0583 MLCT/ILCT/LLCT

H → L + 2 0.40505 (33 %) MLCT/ILCT /LLCT

H − 1 → L + 3 0.50239 (50 %) 4.16/298 0.1442 MLCT/LLCT/ILCT

H − 2 → L + 1 0.26551 (14 %) MLCT/LLCT/ILCT

H − 3 → L 0.22147 (10 %) MLCT/LLCT/ILCT

H − 1 → L + 6 0.56754 (64 %) 4.84/256 0.3634 MLCT/ILCT

H − 12 → L 0.14671 (27 %) 6.00/207 0.1984 LLCT/ILCT

H − 10 → L + 1 0.13017 (26 %) LLCT/ILCT

4 H → L 0.68407 (94 %) 3.31/375 0.0593 MLCT/ILCT

H − 4 → L 0.38532 (30 %) 4.45/279 0.1122 MLCT/ILCT

H − 2 → L + 3 0.37374 (28 %) MLCT/ILCT/LLCT

H − 1 → L + 5 0.20987 (60 %) 4.84/256 0.4181 MLCT/LLCT/ILCT

H − 4 → L + 7 0.35385 (25 %) 5.65/220 0.0571 MLCT/LLCT/ILCT

H − 7 → L + 1 0.30195 (18 %) LLCT/ILCT

H − 8 → L + 1 0.25128 (13 %) MLCT/LLCT/ILCT

5 H → L 0.68395 (94 %) 2.24/383 0.0597 MLCT/ILCT 387 (3.1)

H − 2 → L + 5 0.65833 (87 %) 4.99/248 0.1674 MLCT/ILCT/LLCT 258 (17.9)

H − 5 → L + 6 0.38966 (30 %) 5.71/217 0.0387 MLCT/ILCT/LLCT

H − 10 → L 0.24490 (12 %) LLCT/ILCT

a The unit of ε is 103 M−1 cm−1

4620 J Mol Model (2012) 18:4615–4624



material). It is found that the transition character of 1−5 con-
verts from MLCT/LLCT to MLCT/ILCT with decreased χ
values of L ligands. By comparing the absorptions of 1−5 at
353, 363, 373, 375, and 383 nm, it is found that the absorp-
tions in this region are red-shifted in the order 1, 2, 3, 4, 5,
which is consistent with a decreasing trend of χ value: 4-
pyCN > 4-pyCHO > 4-pyCl > py > 4-pyNH2.

In the high energy region (220–320 nm), the shoulder
absorptions of 1−5 can be assigned to {[d(Ir) + π(ppy)] →
[π* (ppy) + π*(L)]} with MLCT/LLCT/ILCT transition char-
acter. Table 4 and Fig. 3 show that the highest energy absorp-
tions of 2 at 218 nm is attributed to {π(ppy) + π(L)] → [π*
(L)]} transition with LLCT/ILCT transition character. Simi-
larly, the absorptions of 1 and 3 are dominantly assigned to
LLCT/ILCT transition character mixed with MLCT compo-
nent. For 4 and 5, {π(ppy) + π(L)]→ [π*(ppy)]} excitation is

in charge of the absorptions at 220 and 217 nm with MLCT/
LLCT/ILCT transition character.

Experimentally, the absorptions of 2 and 5 at 350–
500 nm are all assigned to MLCT transition, and the ab-
sorption of 5 is red-shifted compared with that of 2. In the
next lower energy (280–350 nm), the shoulder absorptions
can be ascribed to the π → π* and MLCT transitions, while
in the ultraviolet region, measured at about 250−280 nm,
the absorption bands are assigned to π → π* transitions.
Furthermore, our calculated absorption bands of 2 and 5 are
generally consistent with the measured excitation energy
values and the transition assignments.

Geometry structures in the triplet excited state
and emissions in CH2Cl2 media

The main geometry structural parameters of 1−5 in the
lowest triplet states T1 optimized by the UPBE1PBE meth-
od are depicted in Table S10 (Supplementary material). The
calculated results reveal that the structures of 1−5 do not
vary notably relative to those of the ground states. The Ir −
N(1) and Ir − N(2) bond lengths are relatively longer by
about 0.007 Å and Ir − C bond lengths strengthen by about
0.030 Å. Due to the different electronegativity of ligands L,
the Ir − N(3) and Ir − N(4) bond lengths in 1 and 2 are
slightly shortened compared with those in the ground state,
while those in 3−5 are somewhat elongated. The minor
changes of bond lengths corresponds to the electrons being
promoted from the Ir − ppy bonding orbital to the π* (ppy or
L) orbital upon excitation.

The phosphorescence energies of 1–5 in CH2Cl2 media
were calculated from the <DELTA>SCF method [53]: the
energy difference between the ground singlet and triplet

Fig. 3 Simulated absorption spectra of 1−5 in CH2Cl2 media with the
calculated data at the TD-DFT level

Fig. 4 Diagrams of the
molecular orbital related to the
absorptions of 1−5
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states in the triplet state optimized geometry. Compared with
the experimental phosphorescence value of 2 and 5, it is
more accurate than the excitation energies calculated by
TDDFT (Table 5). It may be caused by the without spin-
orbital coupling (SOC) effect in TD-DFT results. However,
TDDFT can still provide a reasonable spectral feature for
transition-metal complex systems [54, 55]. The frontier
molecular orbital compositions responsible for the emis-
sions are compiled in Table S11 (Supplementary material).
As shown in Table 5, the lowest-energy emissions of 1−5
are mainly from the transitions of LUMO → HOMO. The
analysis of the transition reveals that the emission of 2 at
553 nm originates from the 3{[d(Ir) + π(ppy)][π*(L)]} ex-
cited state with 3MLCT/3LLCT character. The nature of the
phosphorescence of 1 is similar to that of 2, but the emis-
sions of 3−5 have different transition nature. It is not L
ligand but ppy ligand correlating with the emissions. With
respect to 3, a 3MLCT/3ILCT/3LLCT type transition at
520 nm is described as 3{[d(Ir) + π(ppy)][π*(ppy) + π*
(L)]}. The emissions of 4 and 5 have a combined
3MLCT/3ILCT character and should come from the 3{[d
(Ir) + π(ppy)][π*(ppy)]} excited state. Herein, we note that
the ligand L (4-pyCN or 4-pyCHO) with large electronega-
tivity has a great effect on the phosphorescence character
(3MLCT/3LLCT), but the small electronegativity ligand L
(4-pyNH2) hardly changes the transition character compared
with the emission character of 4 (3MLCT/3ILCT). In addition,
the different phosphorescence character has brought about
changes in quantum yield and lifetime, which of 5 have been
improved or lengthened compared with that of 2 [19].

The above discussion reveals that the absorptions calcu-
lated at 353, 363, 373, 375, and 383 nm for 1−5, respec-
tively, dominantly arise from the combination of MLCT and
LLCT or ILCT electronic transitions, while the calculated
phosphorescences are just the reverse process of the absorp-
tions. Furthermore, we note that the compositions of HOMO

are similar for 1−5, while those of LUMOs are different.
The HOMOs of 1 and 2 are populated on L ligands but those
of 4 and 5 are localized on ppy ligand. Therefore, the
calculation results indicate that there is a competition be-
tween two different types of 3MLCT transitions: one type
concentrates on the L ligand, and the other type relates to the
ppy ligand, and which one will win the competition depends
on the electronegativity of the ligand L. Hay [56] came to a
similar conclusion that two types of 3MLCT involved a π*
orbital on the C^N or LX ligands compete in the emission.

Solvent effect on the absorption and emission spectra

Different solvents may cause different excitation energies
due to the polarity. However, very similar emission spectra
of 2 were observed in different solvents (dichloromethane
and acetone) within the experimental errors (Table 5). In
order to discuss the solvent effect deeply, absorptions and
emissions of 1−5 are evaluated with PCM method in meth-
anol, acetone, chloroform, toluene, and cyclohexane, as
shown in Table S12 (Supplementary material). It is obvious
that both the absorption and emission spectra are very sim-
ilar in different solvents. Hence, no solvent effects on the
absorptions and emissions were observed, as found for some
bis-cyclometallated complexes containing three-atom che-
lates [Ir(η2-ppy)2(XZY)] (XZY

− 0 mp−, mhp−, chp−, ac−,
bz−, ma−, tma−) [57]. We think the knowledge that the
Iridium (III) complexes [Ir(C^N)2(L)2]

+ have similar absorp-
tions and emissions in different solvents will provide useful
guidance for future experiments.

Conclusions

A series of cationic iridium (III) complexes [Ir(ppy)2(L)2]
+

were investigated theoretically containing different pyridine

Table 5 Phosphorescent emissions in dichloromethane of 1−5 calculated with the TDDFT method, together with the experimental values

Transition (coeff)׀CI׀ E (eV)/(nm)/(nm)a Assignment λexp(nm) τ(ns)c σd

1 L → H 0.70260 (99 %) 2.22/560/540 3MLCT/3LLCT

2 L → H 0.69997 (98 %) 2.13/581/553 3MLCT/3LLCT 517/517b 18 0.01

3 L → H 0.64135 (82 %) 2.14/580/520 3MLCT/3ILCT/3LLCT

L → H−1 0.39657 (31 %) 3MLCT/3ILCT/3LLCT

4 L → H 0.62331 (78 %) 2.44/509/464 3MLCT/3ILCT

L +1 → H − 1 0.31651 (20 %) 3MLCT/3ILCT

5 L → H 0.63279 (80 %) 2.14/578/541 3MLCT/3ILCT 496 300 0.12

L → H−1 0.39385 (31 %) 3MLCT/3ILCT/3LLCT

a obtained by <DELTA>SCF method
b in acetone solution
c τ: life time [ref. 19]
dσ: quantum yield [ref. 19]
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derivatives L. The ligands L with different electronegativity
can cause some variations in electronic structures and spec-
troscopic properties.

1. The nature of LUMO and LUMO + 1 change from π*
(L) to π*(ppy) with decreased electronegativity (χ)
values of ligands L, but that of HOMO is hardly
affected.

2. The absorption transition character of 1−5 converts
from MLCT/LLCT to MLCT/ILCT and the absorptions
are red-shifted in the order 1, 2, 3, 4, 5, which is
consistent with a decreasing trend of χ value: 4-pyCN
> 4-pyCHO > 4-pyCl > py > 4-pyNH2.

3. The different phosphorescence character (3MLCT/3LLCT
or 3MLCT/3ILCT) has brought about changes in quantum
yield and lifetime.

4. The iridium (III) complexes [Ir(C^N)2(L)2]
+ have simi-

lar absorptions and emissions in different solvents.

We hope that the study could provide useful information
for the design of new phosphors in chemosensors with high
phosphorescence quantum yields.
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